
PART – A

1. What is OS?

An operating system is software, consisting of programs and data that runs on computers and

manages computer hardware resources and provides common services for efficient execution

of various application software.

Operating systems are found on almost any device that contains a computer—from cellular

phones and video game consoles to supercomputers and web servers.

2. What is single processor?

It is a processor that has only one core, so it can only start one operation at a time. It can

however in some situations start a new operation before the previous one is complete.

Originally all processors were single core.

 To improve efficiency, processors commonly utilize pipelines internally, which allow several

instructions to be processed together; however, they are still consumed into the pipeline one at

a time. Multi core processors were introduced later, when increasing the clock speeds further

was too hard. These new multi core processors are two processing units combined into one.

3. What are the methods of operating system structure?

(CTD.)

HARDWARE

KERNEL

OUTER OS

INTERFACE

APPLICATIONS

1. HARDWARE: All those I/O peripherals and all physical elements of a system.

2. KERNEL: The bottom-most layer of software present on a machine and the only one

with direct access to the hardware. *The code in the kernel is the most 'trusted' in the

system - and all requests to do anything significant must go via the kernel. It provides

the most key facilities and functions of the system.*

3. OUTER OS: These perform less critical functions - for example, the graphics system which

is ultimately responsible for what you see on the screen.

4. INTERFACE: The interface provides a mechanism for you to interact with the computer.

5. APPLICATIONS: These are the things which do the actual work. (For example Office or simple

(for example the “ls” command commonly found on unix and Linux systems that lists

files in a directory or folder).

4. Define processor.

The processor unit (CPU) is the portion of a computer system that carries out the instructions of

a computer program, and is the primary element carrying out the computer's functions. The

central processing unit carries out each instruction of the program in sequence, to perform the

basic arithmetical, logical, and input/output operations of the system. This term has been in use

in the computer industry at least since the early 1960s. The form, design and implementation of

CPUs have changed dramatically since the earliest examples, but their fundamental operation

remains much the same.

5. What is meant by system calls?

A system call is how a program requests a service from an operating system's kernel that it

does not normally have permission to run. System calls provide the interface between a process

and the operating system. Most operations interacting with the system require permissions not

available to a user level process, e.g. I/o performed with a device present on the system, or any

form of communication with other processes requires the use of system calls.

__

__

PART – B

1. Explain about virtual machines.

A virtual machine (VM) is a software implementation of a machine (i.e. a computer) that

executes programs like a physical machine. Virtual machines are separated into two major

categories, based on their use and degree of correspondence to any real machine. A system

virtual machine provides a complete system platform which supports the execution of a

complete operating system (OS). In contrast, a process virtual machine is designed to run a

single program, which means that it supports a single process. An essential characteristic of a

virtual machine is that the software running inside is limited to the resources and abstractions

provided by the virtual machine—it cannot break out of its virtual world.

System virtual machines:

System virtual machines (sometimes called hardware virtual machines) allow the

sharing of the underlying physical machine resources between different virtual machines, each

running its own operating system.

The main advantages of VMs are:

� Multiple OS environments can co-exist on the same computer, in strong isolation from each

other

� The virtual machine can provide an instruction set architecture (ISA) that is somewhat

different from that of the real machine

� Application provisioning, maintenance, high availability and disaster recovery

The main disadvantages of VMs are:

� A virtual machine is less efficient than a real machine when it accesses the hardware

indirectly

� When multiple VMs are concurrently running on the same physical host, each VM may

exhibit a varying and unstable performance (speed of execution, and not results), which

highly depends on the workload imposed on the system by other VMs, unless proper

techniques are used for temporal isolation among virtual machines.

The desire to run multiple operating systems was the original motivation for virtual machines,

as it allowed time-sharing a single computer between several single-tasking OS. In some

respects, a system virtual machine can be considered a generalization of the concept of virtual

memory that historically preceded it. IBM's CP/CMS, the first systems to allow full

virtualization, implemented time sharing by providing each user with a single-user operating

system, the CMS. Unlike virtual memory, a system virtual machine allowed the user to use

privileged instructions in their code. This approach had certain advantages, for instance it

allowed users to add input/output devices not allowed by the standard system.

Process virtual Machine:

A process VM, sometimes called an application virtual machine, runs as a normal application

inside an OS and supports a single process. It is created when that process is started and

destroyed when it exits. Its purpose is to provide a platform-independent programming

environment that abstracts away details of the underlying hardware or operating system, and

allows a program to execute in the same way on any platform.

A process VM provides a high-level abstraction — that of a high-level programming

language (compared to the low-level ISA abstraction of the system VM). Process VMs are

implemented using an interpreter; performance comparable to compiled programming

languages is achieved by the use of just-in-time compilation.

This type of VM has become popular with the Java programming language, which is

implemented using the Java virtual machine. Other examples include the Parrot virtual

machine, which serves as an abstraction layer for several interpreted languages, and the .NET

Framework, which runs on a VM called the Common Language Runtime.

A special case of process VMs are systems that abstract over the communication mechanisms

of a (potentially heterogeneous) computer cluster. Such a VM does not consist of a single

process, but one process per physical machine in the cluster. They are designed to ease the task

of programming parallel applications by letting the programmer focus on algorithms rather

than the communication mechanisms provided by the interconnect and the OS. They do not

hide the fact that communication takes place, and as such do not attempt to present the cluster

as a single parallel machine.

A virtual machine can also be a virtual environment, which is also known as a virtual private

server. A virtual environment is used for running programs at the user level. Therefore, it is

used solely for applications and not for drivers or operating system kernels.

2. Define cluster system and multi processor.

Cluster system

A computer cluster is a group of linked computers, working together closely thus in many

respects forming a single computer. The components of a cluster are commonly, but not

always, connected to each other through fast local area networks. Clusters are usually deployed

to improve performance and availability over that of a single computer, while typically being

much more cost-effective than single computers of comparable speed or availability.

Categories of clusters

• High-availability (HA) clusters: High-availability clusters (also known as Failover Clusters)

are implemented primarily for the purpose of improving the availability of services that

the cluster provides. They operate by having redundant nodes, which are then used to

provide service when system components fail. The most common size for an HA cluster

is two nodes, which is the minimum requirement to provide redundancy. HA cluster

implementations attempt to use redundancy of cluster components to eliminate single

points of failure.
• Load-balancing clusters: Load-balancing is when multiple computers are linked together

to share computational workload or function as a single virtual computer. Logically,

from the user side, they are multiple machines, but function as a single virtual machine.

Requests initiated from the user are managed by, and distributed among, all the

standalone computers to form a cluster. This results in balanced computational work

among different machines, improving the performance of the cluster systems.

• Compute clusters: Often clusters are used primarily for computational purposes, rather

than handling IO-oriented operations such as web service or databases. For instance, a

cluster might support computational of weather or vehicle crashes. The primary

distinction within computer clusters is how tightly-coupled the individual nodes are. For

instance, a single computer job may require frequent communication among nodes -

this implies that the cluster shares a dedicated network, is densely located, and

probably has homogenous nodes. This cluster design is usually referred to as Beowulf

Cluster. The other extreme is where a computer job uses one or few nodes, and needs

little or no inter-node communication. This latter category is sometimes called "Grid"

computing.

Notable implementations

Consumer game consoles

Due to the increasing computing power of each generation of game consoles, a novel use has emerged

where they are repurposed into High-performance computing (HPC) clusters. Some examples of game

console clusters are Sony PlayStation clusters and Microsoft Xbox clusters. It has been suggested on a

news website that countries which are restricted from buying supercomputing technologies may be

obtaining game systems to build computer clusters for military use.

Virtual Machines

A processor is the unit that reads and executes program instructions, which are fixed-length

(typically 32 or 64 bit) or variable-length chunks of data. The data in the instruction tells the

processor what to do. The instructions are very basic things like reading data from memory or

sending data to the user display, but they are processed so rapidly that we experience the

results as the smooth operation of a program.

A multi-core processor is composed of two or more independent cores. One can describe it as

an integrated circuit which has two or more individual processors (called cores in this sense).

Manufacturers typically integrate the cores onto a single integrated circuit die (known as a chip

multiprocessor or CMP), or onto multiple dies in a single chip package. A many-core processor

is one in which the number of cores is large enough that traditional multi-processor techniques

are no longer efficient— largely due to issues with congestion supplying sufficient instructions

and data to the many processors. This threshold is roughly in the range of several tens of cores

and probably requires a network on chip. The amount of performance gained by the use of a

multi-core processor depends very much on the software algorithms and implementation.

Advantages

The proximity of multiple CPU cores on the same die allows the cache coherency circuitry to

operate at a much higher clock-rate than is possible if the signals have to travel off-chip.

Combining equivalent CPUs on a single die significantly improves the performance of cache

snoop (alternative: Bus snooping) operations. Put simply, this means that signals between

different CPUs travel shorter distances, and therefore those signals degrade less. These higher-

quality signals allow more data to be sent in a given time period, since individual signals can be

shorter and do not need to be repeated as often.

The largest boost in performance will likely be noticed in improved response-time while running

CPU-intensive processes, like antivirus scans, ripping/burning media (requiring file conversion),

or file searching. For example, if the automatic virus-scan runs while a movie is being watched,

the application running the movie is far less likely to be starved of processor power, as the

antivirus program will be assigned to a different processor core than the one running the movie

playback.

Assuming that the die can fit into the package, physically, the multi-core CPU designs require

much less printed circuit board (PCB) space than do multi-chip SMP designs. Also, a dual-core

processor uses slightly less power than two coupled single-core processors, principally because

of the decreased power required to drive signals external to the chip. Furthermore, the cores

share some circuitry, like the L2 cache and the interface to the front side bus (FSB). In terms of

competing technologies for the available silicon die area, multi-core design can make use of

proven CPU core library designs and produce a product with lower risk of design error than

devising a new wider core-design. Also, adding more cache suffers from diminishing returns.

Disadvantages

Maximizing the utilization of the computing resources provided by multi-core processors

requires adjustments both to the operating system (OS) support and to existing application

software. Also, the ability of multi-core processors to increase application performance

depends on the use of multiple threads within applications. The situation is improving: for

example the Valve Corporation's Source engine offers multi-core support, and Crytek has

developed similar technologies for CryEngine 2, which powers their game, Crysis. Emergent

Game Technologies' Gamebryo engine includes their Floodgate technology
.

which simplifies

multicore development across game platforms. In addition, Apple Inc.'s latest OS, Mac OS X

Snow Leopard has built-in multi-core facility called Grand Central Dispatch for Intel CPUs.

Integration of a multi-core chip drives chip production yields down and they are more difficult

to manage thermally than lower-density single-chip designs. Intel has partially countered this

first problem by creating its quad-core designs by combining two dual-core on a single die with

a unified cache, hence any two working dual-core dies can be used, as opposed to producing

four cores on a single die and requiring all four to work to produce a quad-core. From an

architectural point of view, ultimately, single CPU designs may make better use of the silicon

surface area than multiprocessing cores, so a development commitment to this architecture

may carry the risk of obsolescence. Finally, raw processing power is not the only constraint on

system performance. Two processing cores sharing the same system bus and memory

bandwidth limits the real-world performance advantage. If a single core is close to being

memory-bandwidth limited, going to dual-core might only give 30% to 70% improvement. If

memory bandwidth is not a problem, a 90% improvement can be expected. It would be

possible for an application that used two CPUs to end up running faster on one dual-core if

communication between the CPUs was the limiting factor, which would count as more than

100% improvement.

__

